当前位置: 首页  >  师资队伍  >  导师队伍  >  硕士生导师  >  王荣瑶

硕士生导师

姓名:王荣瑶
所在学科:新澳门浦京网址娱乐场
职称:教授
联系电话:
E-mail:wangry@bit.edu.cn
通信地址:

个人简介

1986年北京师范大学理学学士,1989年电子科技大学理学硕士,1998年中国科学院物理研究所理学博士。

工作经历

1998至2005年期间,先后在日本名古屋大学、以色列理工大学、德国海德堡大学(洪堡学者)以及新加坡国立大学从事研究工作。2006年加入新澳门浦京网址娱乐场-奥门新浦京的网址8814,2011年取得博士生导师资格。

 

科研方向

  主要从事软凝聚态物理前沿交叉学科研究。研究光和软物质相互作用新现象和机理、新型微/纳结构软物质功能材料及其在生物传感上的应用。研究方向包括:(1)自组装金属微/纳结构的光学活性及其在分子手性传感上的应用;(2)纳米等离激元动态手性调控及其在构建软纳米机器人中的应用。

  近年来主持和参与的国家自然科学基金研究项目如下:

  1  基于光学微纳结构奇异点的光场手征特性调控及分子手性探测 (参与,2019-2022年)

  2  基于表面等离激元光学驱动的纳米自组装镜像对称破缺新现象和机理研究 (主持,2016-2019年)

  3  金属纳米微粒的螺旋手性构筑及其集合表面等离激元的光学活性研究 (主持,2011-2015年)

  4  金纳米棒/有机分子线性自组装结构的构建及在生物识别中的应用(参与,2011-2014年)

  5  凝胶网络构筑的超声调控及流变性质研究,国家自然科学基金面上项目(主持,2009-2012年)

学术成就

  已在Adv Funct Mater,Nanoscal, Soft Matter, Crystal Growth & Design,J Phys Chem B/C, Nano Research, Phys Chem Chem Phys,J Chem Phys等刊物上发表论文40余篇,论文引用1000余次, H指数为14(数据来源Google学术),国家发明专利 2项。主要研究成果受到国内外同行关注,被国际顶级学术期刊  (如Chem Rev, Angew Chem Int Ed, Chem Soc Rev, ACS Nano, J Am Chem Soc 等)的多篇综述文章点评。现为Nano Lett, Soft Matter, J Am Chem Soc, ACS Photonics, Nanoscale, J Phys Chem Lett, Chem Commun, Anal Chem, Phys Chem Chem Phys, Sci Rep, Langmuir 等国际学术期刊审稿人。

  代表性论文

  1. Zhao W. J., Zhang W.X., Wang R. Y.,* Ji Y. L., Wu X. C., Zhang X. D.* Photocontrollable Chiral Switching and Selection in Self-Assembled Plasmonic Nanostructure, Adv. Funct. Mater. 2019, 1900587.

  2. Zhao W. J., Wang R. Y.,* We H, Li J. L., Ji Y. L., Jiang X., Wu X. C., Zhang X. D. Recognition of Chiral Zwitterionic Interactions at Nanoscale Interfaces by Chiroplasmonic Nanosensors, Phys. Chem. Chem. Phys., 2017, 19, 21401-21406.

  3. Wu T., Zhang W., Wang R. Y., Zhang X., * A giant chiroptical effect caused by the electric quadrupole, Nanoscale, 2017, 9, 5110-5118. 

  4. Zhang W., Wu T., Wang R. Y., Zhang X., * Amplification of the molecular chiroptical effect by low-loss dielectric nanoantennas, Nanoscale, 2017, 9, 5701-5707.

  5. Zhang W., Wu T., Wang R. Y., Zhang X., * Surface-Enhanced Circular Dichroism of Oriented Chiral Molecules by Plasmonic Nanostructures, J. Phys. Chem. C, 2017, 121, 666−675.

  6. Wu T., Zhang X., Wang R. Y., Zhang X., * Strongly Enhanced Raman Optical Activity in Molecules by Magnetic Response of Nanoparticles, J. Phys. Chem. C, 2016, 120, 14795−14804. 

  7. 闫昭,赵文静, 王荣瑶*,基于Logistic函数模型的纳米自组装动力学分析,Acta Phys. Sin. 2016,65,12,126101

  8. Zhai D., Wang  P., Wang R. Y., * Tian X., Ji Y., Zhao W., Wang L., Wei H., Wu X., Zhang, X. Plasmonic Polymers with Strong Chiroptical Response for Sensing Molecular Chirality, Nanoscale, 2015, 7, 10690-10698 

  9. Liu Y., Zhao, W., Ji, Y., Wang R.Y., Wu X., Zhang X. D., *Strong superchiral field in hot spots and its interaction with chiral molecules,Europhys. Lett., 2015, 110, 17008 

  10. Wu T., Wang R. Y., Zhang X., * Plasmon-induced strong interaction between chiral molecules and orbital angular momentum of light, Sci. Rep., 2015, 5, 18003. 

  11. Wang R. Y.,* Wang P., Liu Y., Zhao W., Zhai D., Hong X., Ji Y., Wu X., Wang F., Zhang D., Zhang W., Liu R., Zhang X.,* Experimental Observation of Giant Chiroptical Amplification of Small Chiral Molecules by Gold Nanosphere Clusters, J. Phys. Chem. C., 2014, 118, 18, 9690-9695.

  12. Hou S., Wen T., Zhang H., Liu W., Hu X., Wang R. Y., * Hu Z., * Wu X.* Fabrication of chiral plasmonic oligomers using cysteine-modified gold nanorods as monomers,Nano Research, 2014, 7, 1699-1705. 

  13. Liu Y., Wang R. Y., Zhang X.* Giant circular dichroism enhancement and chiroptical illusion in hybrid molecule-plasmonic nanostructures,Opt. Express, 2014, 22,4,4357-4370. 

  14. Wu T.,Ren J., Wang R. Y., Zhang X.* Competition of Chiroptical Effect Caused by Nanostructure and Chiral Molecules, J. Phys. Chem. C. 2014, 118, 35, 20529–20537.

  15. Wang P., Chen L. Wang R. Y., * Ji Y., Zhai D., Wu X., Liu Y., Chen K., Xu H., * Giant optical activity from the radiative electromagnetic interactions in plasmonic nanoantennas, Nanoscale, 2013, 5, 3889–3894. 

  16. Wang R.Y., * Wang H., Wu X. C., Ji Y., Wang P., Qu Y., Chung T. S. Chiral assembly of gold nanorods with collective plasmonic circular dichroism response,Soft Matter, 2011,7, 8370–8375. 

  17. Liu Y., Wang R. Y.,* Li J. L., Yuan B., Han M., Wang P., Liu X.Y. Identify Kinetic Features of Fibers Growing, Branching, and Bundling in Microstructure Engineering of Crystalline Fiber Network, CrystEngComm, 2014,16, 5402–5408 

  18. Wang R. Y., * Wang P., Li J. L., Yuan B., Liu Y., Li L., Liu X.Y., From kinetic–structure analysis to engineering crystalline fiber networks in soft materials, Phys. Chem. Chem. Phys., 2013, 15, 3313-3319. 

  19. Li J. L., Liu X. Y. *, Wang X. G., Wang R. Y.,Controlling Nanoparticle Formation via Sizable Cages of Supramolecular Soft Materials,Langmuir, 2011,27, 7820–7827. 

  20. Wang R. Y., Liu X. Y.*, Li J. L. Engineering Molecular Self-assembled Fibrillar Networks by Ultrasound,Cryst. Growth & Des., 2009, 9, 3286-3291. 

  21. Xiong J. Y., Liu X. Y.*, Li J. L., Narayanan J., Wang R. Y., Understanding of hydrogel network formation and its application in the architecture of significantly enhanced hydrogel, Appl. Phys. Lett., 2006, 89, 083106-083108. 

  22. Li J. L., Wang R. Y., Liu X. Y.* Nanoengineering of a Biocompatible Organogel by Thermal Processing, J. Phys. Chem. B. 2009, 113, 5011-5015. 

  23. Wang R. Y., Liu X. Y.*, Narayanan J., Xiong J. Y., Li J. L. Architecture of Fiber Network: From Understanding to Engineering of Molecular Gels, J. Phys. Chem. B. 2006, 110, 25797-25802. 

  24. Wang R. Y., Liu X. Y.*, Xiong J. Y., Li J. L. Real-time observations of fiber network formation in molecular organogel: Supersaturation-dependent microstructure and its related rheological property, J. Phys. Chem. B. 2006, 110, 7275-7280. 

  25. Wang R.Y., Himmelhaus M.*, Fick J., Herrwerth S., Grunze M. Interaction of Self-Assembled Monolayers of Oligo(ethylene glycol)- Terminated Alkanethiols with Water Studied by Vibrational Sum Frequency Generation (VSFG), J. Chem. Phys., 2005, 122, 164702. 

  26. Li J. L, Liu X. Y.*, Wang R. Y., Xiong J. Y, Architecture of a Biocompatible Supramolecular Material by Supersaturation-driven Fabrication of Fiber Network, J. Phys. Chem. B. 2005, 109, 24231-24235. 

  27. Wang, R. Y. * Distribution of Eu3+ ions in LaPO4 nanocrystals,J. Luminescence, 2004, 106, 211-217. 

  招生信息

  每年拟招收博士生和硕士生1~2名。欢迎有志从事软物质物理与纳米光子学交叉前沿领域研究的同学报考,优先考虑具有光物理、化学物理、材料物理专业背景的考生。联系方式:wangry@bit.edu.cn